

Programming with OpenGL Part 1: Background

Ed Angel
Professor of Computer Science,
Electrical and Computer
Engineering, and Media Arts
University of New Mexico

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

- Development of the OpenGL API
- OpenGL Architecture
- OpenGL as a state machine
- Functions
 - Types
 - Formats
- Simple program

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Early History of APIs

- •IFIPS (1973) formed two committees to come up with a standard graphics API
 - Graphical Kernel System (GKS)
 - 2D but contained good workstation model
 - Core
 - Both 2D and 3D
 - GKS adopted as IS0 and later ANSI standard (1980s)
- •GKS not easily extended to 3D (GKS-3D)
 - Far behind hardware development

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

PHIGS and X

- Programmers <u>Hi</u>erarchical <u>G</u>raphics System (PHIGS)
 - Arose from CAD community
 - Database model with retained graphics (structures)
- X Window System
 - DEC/MIT effort
 - Client-server architecture with graphics
- •PEX combined the two
 - Not easy to use (all the defects of each)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

SGI and GL

- Silicon Graphics (SGI) revolutionized the graphics workstation by implementing the pipeline in hardware (1982)
- To access the system, application programmers used a library called GL
- With GL, it was relatively simple to program three dimensional interactive applications

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL

The success of GL lead to OpenGL (1992), a platform-independent API that was

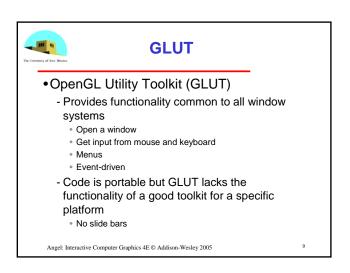
- Easy to use
- Close enough to the hardware to get excellent performance
- Focus on rendering
- Omitted windowing and input to avoid window system dependencies

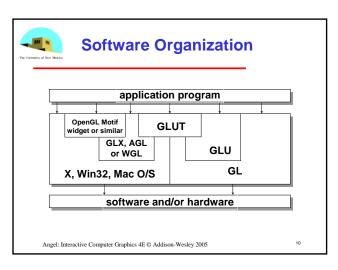
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

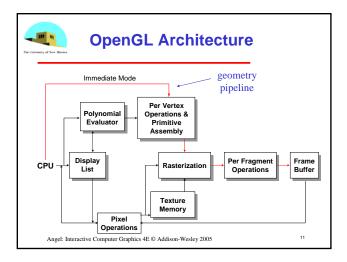
6

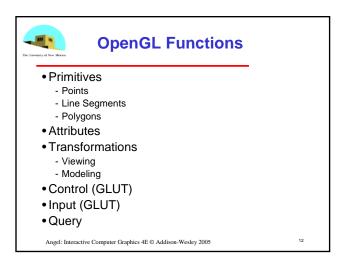
OpenGL Evolution

- Controlled by an Architectural Review Board (ARB)
 - Members include SGI, Microsoft, Nvidia, HP, 3DLabs, IBM,.....
 - Relatively stable (present version 2.0)
 - Evolution reflects new hardware capabilities
 - 3D texture mapping and texture objects
 - Vertex programs
 - Allows for platform specific features through extensions


Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005




OpenGL Libraries

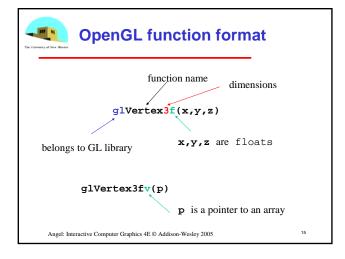

- OpenGL core library
 - OpenGL32 on Windows
 - GL on most unix/linux systems (libGL.a)
- OpenGL Utility Library (GLU)
 - Provides functionality in OpenGL core but avoids having to rewrite code
- Links with window system
 - GLX for X window systems
 - WGL for Windows
 - AGL for Macintosh

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL State

- OpenGL is a state machine
- OpenGL functions are of two types
 - Primitive generating
 - Can cause output if primitive is visible
 - How vertices are processed and appearance of primitive are controlled by the state
 - State changing
 - · Transformation functions
 - Attribute functions

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

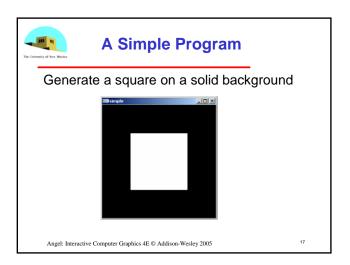


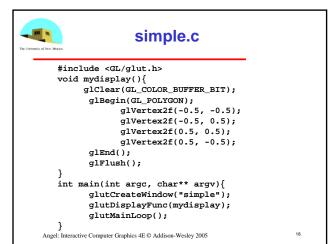
Lack of Object Orientation

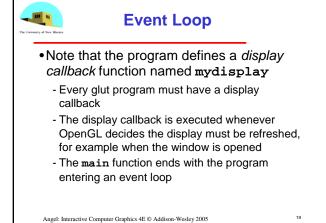
- OpenGL is not object oriented so that there are multiple functions for a given logical function
 - -glVertex3f
 - -glVertex2i
 - -glVertex3dv
- Underlying storage mode is the same
- Easy to create overloaded functions in C++ but issue is efficiency

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

14




OpenGL #defines


- Most constants are defined in the include files gl.h, glu.h and glut.h
 - Note #include <GL/glut.h> should automatically include the others
 - Examples
 - -glBegin(GL_POLYGON)
 - -glClear(GL_COLOR_BUFFER_BIT)
- •include files also define OpenGL data types: GLfloat, GLdouble,....

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

16

Defaults

- •simple.c is too simple
- Makes heavy use of state variable default values for
 - Viewing
 - Colors
 - Window parameters
- Next version will make the defaults more explicit

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

20

Notes on compilation

- See website and ftp for examples
- Unix/linux
 - Include files usually in .../include/GL
 - Compile with -lglut -lglu -lgl loader flags
 - May have to add -L flag for X libraries
 - Mesa implementation included with most linux distributions
 - Check web for latest versions of Mesa and glut

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

21

Compilation on Windows

- Visual C++
 - Get glut.h, glut32.lib and glut32.dll from web
 - Create a console application
 - Add opengl32.lib, glut32.lib, glut32.lib to project settings (under link tab)
- Borland C similar
- Cygwin (linux under Windows)
 - Can use gcc and similar makefile to linux
 - Use -lopengl32 -lglu32 -lglut32 flags

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

22